Solar Cell Fabric
The Challenges of Creating Wearable Solar Cell Fabric
Scientists have been working on developing a practical solar cell textile for years, and now they are getting closer to a finalized design.
Normally, photovoltaic panels are made of glass or another rigid material, which isn’t exactly practical for clothing. Consequently, researchers have worked to create a functional solar cell component that is flexible and breathable.
Photovoltaic cells must be pliable to be integrated successfully into a textile. Otherwise, bending the fabric would cause their seals to break, destroying their ability to harvest light energy from the sun.
In addition, solar fabric must incorporate battery storage. Without it, as soon as the textile is no longer exposed to the sun, it will stop providing power. Batteries also must be flexible, rechargeable and inexpensive to be practical for a mass market photovoltaic textile.

New Textile Creates Power from Solar Cells and Mechanical Energy
The latest photovoltaic textile technology combines two different polymer fibers, both of which are lightweight and low-cost.
One component is a fiber coated with several chemical elements and compounds. Among them is zinc oxide, a photovoltaic material, which is woven together with copper wire. Essentially, this embeds the fiber with tiny solar cells that can capture ambient light.
The second component is made of copper-coated polytetrafluoroethylene strips along with more copper wire, materials that generate mechanical energy or electricity from friction.
As for solar fabric battery storage, scientists have found that polyester yarn coated with nickel and carbon combined with polyurethane can produce a flexible battery that continues to work even when repeatedly bent and folded.